 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If `A B C D`is a rhombus whose diagonals cut at theorigin `O ,`then proved that ` vec O A+ vec O B+ vec O C+ vec O D+ vec Odot`A. `A vec(B) + A vec(C )`B. `vec(0)`C. `2(vec(AB)+vec(BC))`D. `A vec(C ) +vec(BD)` | 
| Answer» Correct Answer - B Since the diagonals of a rhombus bisect each other. `therefore O vec(A) = -O vec(C ) and O vec(B)=-vec(OD)` `rArr O vec(A)+O vec(B)+O vec(C ) +vec(OD) = vec(0)` | |