1.

If `A B C D`is a rhombus whose diagonals cut at theorigin `O ,`then proved that ` vec O A+ vec O B+ vec O C+ vec O D+ vec Odot`A. `A vec(B) + A vec(C )`B. `vec(0)`C. `2(vec(AB)+vec(BC))`D. `A vec(C ) +vec(BD)`

Answer» Correct Answer - B
Since the diagonals of a rhombus bisect each other.
`therefore O vec(A) = -O vec(C ) and O vec(B)=-vec(OD)`
`rArr O vec(A)+O vec(B)+O vec(C ) +vec(OD) = vec(0)`


Discussion

No Comment Found

Related InterviewSolutions