1.

If a cone and a hemisphere have equal radii and heights then the ratio of its volumes is …………A) 1 : 2 B) 3 : 1 C) 4 : 1 D) 1 : 1

Answer»

Correct option is: A) 1 : 2

Height of hemisphere = Radius of hemisphere = r.

\(\because\) Heights of cone and hemisphere are equal.

\(\therefore\) Height of cone = r = Radius of base of cone.

\(\therefore\) \(\frac {V_1}{V_2} \) =  \(\frac {Volume \,of \,cone}{Volume \, of\, hemisphere} = \frac {\frac 13 \pi r^2 h}{\frac 23 \pi r^3}\)

\(\frac h{2r} = \frac r {2r} = \frac 12 \) (\(\because\) h = r)

= 1 : 2

Hence the ratio of their volumes is 1 : 2

Correct option is: A) 1 : 2



Discussion

No Comment Found

Related InterviewSolutions