1.

If a cos θ + b sin θ = m and a sin θ - b cos θ = n, prove that m2 + n2 = a2 + b2 

Answer»

Given, 

m2 = a2 cos2 θ + 2 ab sin θ cos θ + b2 sin2θ

and

n2 = a2 sin2 θ-2 ab sin θ cos θ + b2cos2 θ

Adding equations (i) and (ii)

m2 + n2 = a2 (cos2 θ + sin2 θ) + b2(cos2θ + sin2 θ)

= a2 (1) + b2 (1)

= a2 + b2 = RHS



Discussion

No Comment Found