

InterviewSolution
Saved Bookmarks
1. |
If a cosθ – b sinθ = x and a sinθ + b cosθ = y that a2 + b2 = x2 + y2. |
Answer» Taking RHS =x2 + y2 Putting the values of x and y, we get (a cos θ – b sin θ)2 + (a sin θ + b cos θ)2 = a2cos2θ + b2 sin2θ – 2ab cos θ sin θ + a2sin2θ + b2 cos2θ + 2ab cos θ sin θ = a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ) = a2 + b2 [∵ cos2 θ + sin2 θ = 1] = RHS Hence Proved |
|