1.

If a cosθ – b sinθ = x and a sinθ + b cosθ = y that a2 + b2 = x2 + y2.

Answer»

Taking RHS =x2 + y2

Putting the values of x and y, we get

(a cos θ – b sin θ)2 + (a sin θ + b cos θ)2

= a2cos2θ + b2 sin2θ – 2ab cos θ sin θ + a2sin2θ + b2 cos2θ + 2ab cos θ sin θ

= a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)

= a2 + b2 [∵ cos2 θ + sin2 θ = 1]

= RHS

Hence Proved



Discussion

No Comment Found