InterviewSolution
Saved Bookmarks
| 1. |
If A is a square matrix of order `n xx n` then adj(adj A) is equal toA. `|A|^(n)A`B. `|A|^(n-1)A`C. `|A|^(n-2)A`D. `|A|^(n-3)A` |
|
Answer» Correct Answer - D For any square matrix B, we have `B("adj B")=|B|I_(n)` On taking B=adj A, we get (adj A)[adj (adj A)]=|adj A|`I_(n)` `Rightarrow ` adjA[adj(adj A)]=`|A|^(n-1)I_(n) (therefore |adj A|=|A|^(n-1))` `Rightarrow` (A adj A)[adj (adj A)]=`|A|^(n-1)A` `Rightarrow (|A|I_(n))[adj (adj A)]=|A|^(n-1)A` `Rightarrow` adj(adj A)=`|A|^(n-2)A` |
|