InterviewSolution
Saved Bookmarks
| 1. |
If a parallelogram circumscribes a circle then prove that it must be a rhombus. |
|
Answer» Solution :Given a parallelogram, say ABCD, Let this parallelogram TOUCH the circle at the point P, Q, R and S. As AP and AS are tangents to the circle drawn from an EXTERNAL point A. `AP=AS""…(1)` SIMILARLY,`""BP=BQ""…(2)` `CR=CQ""...(3)` `DR=DS""...(4)` Circles Adding (1), (2), (3) and (4), we get `implies""AP+BP+CR+DR=AS+BQ+CQ+DS` `implies""(AP+BP)+(CR+DR)=(AS+DS)+(BQ+CQ)` `implies""AB+CD=AD+BC` `implies""AB+AB=AD+AD` (CD=AB, DB=AD, opposite sides of a parallelogram) `implies""2AB=2AD` `implies""AB=AD` Hence, ABCD is a RHOMBUS. (`because` adjacent sides of a parallelogram are equal) Hence Proved. |
|