1.

If a sin θ + b cos θ = c, what is/are the values of (a cos θ – b sin θ)?(a) c – a + b (b) c – b + a (c) \(±\sqrt{a^2+b^2-c^2}\)(d) \(±\sqrt{c^2+b^2-a^2}\)

Answer»

(c) \(±\sqrt{c^2+b^2-a^2}\)

Given, a sin θ – b cos θ = c 

(a cos θ – b sin θ)2 

= a2 cos2θ – 2ab cos θ sin θ + b2 sin2θ 

= a2 (1 – sin2θ) – 2(a sin θ) (b cos θ) + b2 (1 – cos2θ) 

= a2 – a2 sin2θ – 2 (a sin θ) (b cos θ) + b2 – b2 cos2θ 

= a2 + b2 – [a2 sin2θ + 2 (a sin θ) (b cos θ) + b2 cos2θ] 

= a2 + b2 – (a sin θ + b cos θ)2 = a2 + b2 – c2 

⇒ (a cos θ – b sin θ) = \(±\sqrt{c^2+b^2-a^2}\)



Discussion

No Comment Found