1.

If a1, a2, a3 ....... an are positive real numbers whose product is a fixed number ‘c’, then the minimum value of a1 + a2 ..... + an–1 + 2an is(a) n (2c)1/n (b) (n + 1)c1/n (c) 2nc1/n (d) (n + 1) (2c)1/n

Answer»

(c)  n(2c)\(\frac1n\) 

For positive real numbers, AM > GM

⇒ \(\frac{(a_1+a_2+a_3+.......+2a_n)}{n}\) > (a1.a2.a3.......2an)\(\frac1n\)

⇒ (a1 + a+ a3 + ......+ 2an) > n(c.2)\(\frac1n\) =  n(2c)\(\frac1n\)

Hence the least value is  n(2c)\(\frac1n\) 



Discussion

No Comment Found

Related InterviewSolutions