1.

If `alpha` and `beta` are the roots of the equation `x^2-2x+4=0`, prove that `alpha^n+beta^n=2^(n+1)cos(npi/3)`

Answer» `x^2-2x+4=0`
`(x-1)^2+3=0`
`(x-1)^2=-3`
`(x-1)=pmsqrt3i`
`x=pmsqrt3i+1`
`x=2(1/2pmsqrt3/2i)`
`x-2(cospi/3pmisinpi/3)`
`x=2e^(pmipi/3)`
`alpha^n=2e^(ipi/3)`,`beta^n=2^n e^(-i npi/3)`
`alpha^n+beta^n=2^n(cosnpi/3+isinnpi/3+cosnpi/3-isinnpi/3)`
`=2^n*2*cos(npi/3)`
`=2^(n+1) cos(npi/3)`.


Discussion

No Comment Found