1.

If `alpha,beta`are roots of `x^2+-p x+1=0a n dgamma,delta`are the roots of `x^2+q x+1=0`, then prove that `q^2-p^2=(alpha-gamma)(beta-gamma)(alpha+delta)(beta+delta)`.

Answer» Correct Answer - `q^(2)-p^(2)`
Since, `alpha+beta=-, alphabeta=1and gamma+delta=-q,gamma delta=1`
Now, `(alpha-gamma)(beta-gamma)(alpha+delta)(beta+delta)`
`{alpha beta-gamma(alpha+beta)+gamma^(2)}{alphabeta+delta(alpha+beta)+delta^(2)}`
`={1-gamma(-p)+gamma^(2)}{1+delta(-p)+delta^(2)}`
`={1-gamma(-p)+gamma^(2)}{1+delta(-p)+delta^(2)}`
`=(1+y^(2)+gammap)(1-deltap+delta^(2))=(-qgamma+gammap)(-deltap-deltap)`
`[becausegamma^(2)+qgamma+1=0and delta^(2)+qdelta+1=0]`
`=(q^(2)-p^(2))(gammadelta)=q^(2)-p^(2)" "[becausegamma delta=1]`


Discussion

No Comment Found

Related InterviewSolutions