

InterviewSolution
Saved Bookmarks
1. |
If `alphaa n dbeta`are roots of the equation `a x^2+b x+c=0,`then the roots of the equation `a(2x+1)^2-b(2x+1)(3-x)+c(3-x)^2=0`are`(2alpha+1)/(alpha-3),(2beta+1)/(beta-3)`b. `(3alpha+1)/(alpha-2),(3beta+1)/(beta-2)`c. `(2alpha-1)/(alpha-2),(2beta+1)/(beta-2)`d. none of theseA. `(2alpha + 1)/(alpha - 3), (2beta + 1)/(beta - 3)`B. `(3alpha + 1)/(alpha - 2), (2beta + 1)/(beta - 2)`C. `(2alpha - 1)/(alpha - 2), (2beta + 1)/(beta - 2)`D. none of these |
Answer» Correct Answer - 2 `a((2x + 1)^(2))/((x - 3)^(2)) + b((2x + 1))/((x - 3)) + c = 0` `rArr (2x + 1)/(x - 3) = alpha` or `(2x + 1)/(x - 3) = beta` or `2x + 1 = alphax - 3alpha` or `x(alpha - 2) = 1 + 3alpha` or `x = (1 + 3alpha)/(alpha - 2), (1 + 3beta)/(beta - 2)` |
|