InterviewSolution
Saved Bookmarks
| 1. |
If any triangle ABC with usual notations prove `c=a cos B + b cos A`. |
|
Answer» By cosine rule and with usual notations, we have `b^(2)=c^(2)+a^(2)-2ca cos B`. `:.cos B = (c^(2)+a^(2)-b^(2))/(2ca)` Similarly, `cos A = (b^(2)+c^(2)-a^(2))/(2bc)` R.H.S. `=a*cos B+b * cos A` `=a*((c^(2)+a^(2)-b^(2))/(2ca))+b*((b^(2)+c^(2)-a^(2))/(2bc))` `=(c^(2)+a^(2)-b^(2))/(2c)+(b^(2)+c^(2)-a^(2))/(2c)` `=(c^(2)+a^(2)-b^(2)+b^(2)+c^(2)-a^(2))/(2c)` `=(2c^(2))/(2c)` `=c=` L.H.S. `:.c=a*cos B+b*cos A " " ` Hence Proved. |
|