1.

If `asin^(-1)x-bcos^(-1)x=c ,`then `asin^(-1)x+bcos^(-1)x`is equal to(a)`0 `(b) `(pia b+c(b-a))/(a+b)`(c)`pi/2`(d)`(pia b+c(a-b))/(a+b)`

Answer» `asin^(-1)x-bcos^(-1)x=c-(1)`
`b(cos^(-1)x+sin^(-1)x)=pi/2*b-(2)`
Adding equation 1 and 2
`sin^(-1)x(a+b)=(bpi)/2+c`
`sin^(-1)x=((bpi)/2+c)/(a+b)-(3)`
`cosx=pi/2-((bx+2c)/(2(a+b)))`
`=(pia-2c)/(2(a+b))`
`asin^(-1)x+bcos^(-1)x=(xab+c(a-b))/(a+b)`
Option D is correct.


Discussion

No Comment Found