1.

If`e^x+e^y=e^(x+y),` prove that `(dy)/(dx)+e^(y-x)=0`

Answer» Given : `e^(x)+e^(y)=e^(x+y)." …(i)"`
On dividing throughout by `e^(x+y)`, we get
`e^(-y)+e^(-x)=1." …(ii)"`
`e^(-y).((-dy)/(dx))+e^(-x)(-1)=0`
`rArr(dy)/(dx)=(-e^(-x))/(e^(-y))=-e^((y-x)).`


Discussion

No Comment Found