1.

If f’(x) = 8x3 – 2x, f(2) = 8, find f(x).

Answer»

Given, 

f’(x) = 8x3 – 2x and f(2) = 8 

On integrating the given equation, we have

\(\int\)f'(x)dx =  \(\int\)(8x3 -2x) dx

We know,

 \(\int\)f'(x)dx = f(x)

⇒  f(x) =  \(\int\)(8x3 -2x) dx

⇒  f(x) =  \(\int\)(8x3 -2x) dx - \(\int\)2xdx

⇒  f(x) =  8\(\int\)(x3 dx - 2\(\int\)xdx

Recall \(\int\)xndx = \(\frac{x^{n+1}}{n+1}\) + c

⇒  f(x) =  8(\(\frac{x^{3+1}}{3+1}\)) - 2(\(\frac{x^{1+1}}{1+1}\)) + c

⇒  f(x) =  8(\(\frac{x^{4}}{4}\)) - 2(\(\frac{x^{2}}{2}\)) + c

⇒ f(x) = 2x4 – x2 + c 

On substituting x = 2 in f(x), we get 

f(2) = 2(24) – 22 + c 

⇒ 8 = 32 – 4 + c 

⇒ 8 = 28 + c 

∴ c = –20 

On substituting the value of c in f(x), we get 

f(x) = 2x4 – x2 + (–20) 

∴ f(x) = 2x4 – x2 – 20 

Thus, 

f(x) = 2x4 – x2 – 20



Discussion

No Comment Found