InterviewSolution
| 1. |
If f’(x) = 8x3 – 2x, f(2) = 8, find f(x). |
|
Answer» Given, f’(x) = 8x3 – 2x and f(2) = 8 On integrating the given equation, we have \(\int\)f'(x)dx = \(\int\)(8x3 -2x) dx We know, \(\int\)f'(x)dx = f(x) ⇒ f(x) = \(\int\)(8x3 -2x) dx ⇒ f(x) = \(\int\)(8x3 -2x) dx - \(\int\)2xdx ⇒ f(x) = 8\(\int\)(x3 dx - 2\(\int\)xdx Recall \(\int\)xndx = \(\frac{x^{n+1}}{n+1}\) + c ⇒ f(x) = 8(\(\frac{x^{3+1}}{3+1}\)) - 2(\(\frac{x^{1+1}}{1+1}\)) + c ⇒ f(x) = 8(\(\frac{x^{4}}{4}\)) - 2(\(\frac{x^{2}}{2}\)) + c ⇒ f(x) = 2x4 – x2 + c On substituting x = 2 in f(x), we get f(2) = 2(24) – 22 + c ⇒ 8 = 32 – 4 + c ⇒ 8 = 28 + c ∴ c = –20 On substituting the value of c in f(x), we get f(x) = 2x4 – x2 + (–20) ∴ f(x) = 2x4 – x2 – 20 Thus, f(x) = 2x4 – x2 – 20 |
|