1.

If `f(x)=alog|x|+b x^2+x`has its extremum values at `x=-1a n dx=2,`then`a=2,b=-1``a=2,b=-1//2``a=-2,b=1//2`(d) none of theseA. a=2,b=-1B. a=2,b=`-1//2`C. a=-2,b=`1//2`D. none of these

Answer» Correct Answer - 2
We have `f(X) =a log|x|+bx^(2) +x`
or `f(X) =(a)/(x)+2bx+1`
since f(X) attains its extremum values at x=1,2
f(-1) =0 and f(X) =0
or -a-2b+1 and `(a)/(2)`+4b+1=0 or a =2 and b =-`1//2`


Discussion

No Comment Found