1.

If `f(x)=x^(11)+x^9-x^7+x^3+1`and `f(sin^(-1)(sin8)=alpha,alpha`is constant, then `f(tan^(-1)(t a n8)`is equal to`alpha`(b) `alpha-2`(c) `alpha+2`(d) `2-alpha`A. `alpha`B. `alpha -2`C. `alpha + 2`D. `2 - alpha`

Answer» Correct Answer - D
`f(x) + f(-x) = 2`
Now `(sin^(-1) (sin 8)) = 3pi - 8 = y`
And `(tan^(-1) (tan 8)) = (8 - 3pi) = -y`
Hence, `f(y) + f(-y) = 2`
Given `f(y) = alpha`, we have `f(-y) = 2 - alpha`


Discussion

No Comment Found