1.

If `f(x)=x^3-x^2+100x+2002 ,t h e n``f(1000)>f(1001)``f(1/(2000))>f(1/(2001))``f(x-1)>f(x-2)``f(2x-3)>f(2x)`A. `f(1000)ltf(1001)`B. `f((1)/(2000))gtf((1)/(2001))`C. `f(x-1)gtf(x-2)`D. `f(2x-3)gtf(2x)`

Answer» Correct Answer - 2,3
`f(X)=x^(3)-x^(2)+100x+2002`
`f(x)=3x^(2)-2x+100gt0 forall x in R` thus
Therefore fX() is increasing (strictly) Thus
`f((1)/(2000))gtf((1)/(2001))`
Also `f(X-1)gtf(x-2)asx-1gtx-2forallx`


Discussion

No Comment Found