InterviewSolution
Saved Bookmarks
| 1. |
If f(x) = x3 - \(\frac{1}{x^3}\), then show that f(x) + f(\(\frac{1}{x}\)) = 0 |
|
Answer» f(x) = x3 - \(\frac{1}{x^3}\) ... (1) f(\(\frac{1}{x}\)) = (\(\frac{1}{x}\))3 - \(\frac{1}{(\frac{1}{x})^3}\) = \(\frac{1}{x^3}\) - x3 ... (2) (1) + (2) gives f(x) + f(\(\frac{1}{x}\)) = x3 - \(\frac{1}{x^3}+\frac{1}{x^3}-x^3\) = 0 Hence Proved. |
|