InterviewSolution
Saved Bookmarks
| 1. |
If \(\frac{log\,x}{a^2+ab+b^2}\) = \(\frac{log\,y}{b^2+bc+c^2}\) = \(\frac{log\,z}{c^2+ca+a^2}\), then xa-b . yb-c . zc-a = (a) 0 (b) –1 (c) 1 (d) 2 |
|
Answer» (c) 1 Let each ratio = k and base = e ⇒ loge x = k(a2 + ab + b2) ⇒ (a – b) loge x = k (a – b) (a2 + ab + b2) ⇒ loge xa – b = k(a3 – b3) ⇒ xa – b = \(e^{k(a^3-b^3)}\) Similarly, yb-c = \(e^{k(b^3-c^3)}\), zc-a = \(e^{k(c^3-a^3)}\) ∴ xa-b . yb-c . zc-a = \(e^{k(a^3-b^3)}\). \(e^{k(b^3-c^3)}\) . \(e^{k(c^3-a^3)}\) = \(e^{k[a^3-b^3+b^3-c^3+c^3-a^3]}\) = e0 = 1. |
|