1.

If \(\frac{log\,x}{a^2+ab+b^2}\) = \(\frac{log\,y}{b^2+bc+c^2}\) = \(\frac{log\,z}{c^2+ca+a^2}\), then xa-b . yb-c . zc-a = (a) 0 (b) –1 (c) 1 (d) 2

Answer»

(c) 1

Let each ratio = k and base = e 

⇒ loge x = k(a2 + ab + b2

⇒ (a – b) loge x = k (a – b) (a2 + ab + b2

⇒ loge xa – b = k(a3 – b3) ⇒ xa – b = \(e^{k(a^3-b^3)}\) 

Similarly, yb-c \(e^{k(b^3-c^3)}\), zc-a\(e^{k(c^3-a^3)}\)

∴ xa-b . yb-c . zc-a\(e^{k(a^3-b^3)}\)\(e^{k(b^3-c^3)}\) . \(e^{k(c^3-a^3)}\)

\(e^{k[a^3-b^3+b^3-c^3+c^3-a^3]}\) = e0 = 1.



Discussion

No Comment Found