InterviewSolution
Saved Bookmarks
| 1. |
If \(\frac{{sec\theta\; + \;tan\theta }}{{sec\theta\; - \; tan\theta }} = \frac{5}{3}\), then sinθ is equal to1). 1/42). 1/33). 2/34). 3/4 |
|
Answer» $(\frac{{sec\theta\; + \;tan\theta }}{{sec\theta\; - \; tan\theta }} = \frac{5}{3})$ Further solving the above equation we have, $(\frac{{\frac{{1 \;+ \;SIN\theta }}{{cos\theta }}}}{{\frac{{1\; - \; sin\theta }}{{cos\theta }}}} = \frac{5}{3})$ ⇒ 3(1 + sin θ) = 5(1 - sin θ) ⇒ 8sinθ = 2 ⇒ sinθ = 1/4 |
|