1.

If \(\frac{{sec\theta\; + \;tan\theta }}{{sec\theta\; - \; tan\theta }} = \frac{5}{3}\), then sinθ is equal to1). 1/42). 1/33). 2/34). 3/4

Answer»

$(\frac{{sec\theta\; + \;tan\theta }}{{sec\theta\; - \; tan\theta }} = \frac{5}{3})$

Further solving the above equation we have,

$(\frac{{\frac{{1 \;+ \;SIN\theta }}{{cos\theta }}}}{{\frac{{1\; - \; sin\theta }}{{cos\theta }}}} = \frac{5}{3})$

⇒ 3(1 + sin θ) = 5(1 - sin θ)

⇒ 8sinθ = 2

⇒ sinθ = 1/4


Discussion

No Comment Found