InterviewSolution
Saved Bookmarks
| 1. |
If `H(x_(0))`=0 for some x=`x_(0)`and `(d)/(dx)H(x)gt2cxH(x)` for all `xgex_(0)`where `cgt0` thenA. H(x) = 0 has root for `x gt x_(0)`B. H(x) = 0 has no root for `x gt x_(0)`C. H(x) is a constant functioD. none of these |
|
Answer» Correct Answer - 2 Given that `(d)/(dx)H(x)gt2cxH(x)` or `e^(-cx^(2))(d)/(dx)H(x)-e^(-cx^(2))2cxH(x)gt0` or `(d)/(dx)H(x)e^(-cx^(2))gt0` Thus `H(x)e^(-cx^(2))` is and increasing function But `h(x_(0))gt0` for all `xgtx_(0)` Hence H(x) connot be zero for any `xgtx_(0)` |
|