1.

If `lim_(xrarra) f(x)=lim_(xrarra) [f(x)]` ([.] denotes the greates integer function) and f(x) is non-constant continuous function, thenA. `underset(xrarra)(lim)` f(x) is an integerB. `underset(xrarra)(lim)` f(x) is non-integerC. f(x) has local maximum at x = aD. f(x) has local minimum at x = a

Answer» Correct Answer - A::D
We have `underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)]`.
The can occur only when `underset(xrarra)(lim)f(x)` is an integer.
`rArr" "f(a^(+))gt f(a) and f(a^(-))gt f(a)`
`rArr" "x = a` must be point of local minima.


Discussion

No Comment Found