

InterviewSolution
Saved Bookmarks
1. |
If `log_(10)2, log_(10)(2^(x)-1) and log_(10)(2^(x)+3)` are three consecutive terms of an A.P, then the value of x isA. 1B. `log_(5)2`C. `log_(2)5`D. `log_(10)5` |
Answer» Correct Answer - C `log_(10)2, log_(10)(2^(x)-1) and log_(10)(2^(x)+3)` are in A.P. Hence, common difference will be same. `therefore log_(10)(2^(x)-1)-log_(10)2=log(2^(x)+3)-log_(10)(2^(x)-1)` `therefore log_(10)((2^(x)-1)/(2))=log_(10)((2^(x)+3)/(2^(x)-1))` `implies(2^(x)-1)/(2)=(2^(x)+3)/(2^(x)-1)` `(2^(x)-1)^(2)=2(2^(x)+3)` `2^(2x)-2^(x+1)+1=2^(x+1)+6` `2^(2x)-2^(x+2)=5` Let `2^(x)=y`, then `y^(2)-4y-5=0` `y^(2)-5y+y-5=0` `y(y-5)+1(y-5)=0` `y=-1, y=5` `"Therefore, "2^(x)=5` `x=log_(2)5`. |
|