1.

If loge (x2 – 16) < loge (4x – 11), then(a) – 1 < \(x\) < 5 (b) \(x\) < – 1 or \(x\) > 5 (c) 4 < \(x\) < 5 (d) \(x\) < – 4 or \(x\) > 4

Answer»

(a) – 1 < x <

loge (x2 – 16) < loge (4x – 11) 

(x2 – 16) < 4x – 11 

( a > 1, loga f (x) > loga(gx) ⇒ f (x) > g(x) > 0) 

⇒ x2 – 4x – 5 < 0 ⇒ (x – 5) (x + 1) < 0 

⇒ – 1 < x <

( If a < b, then (x – a) (x – b) < 0 ⇒ a < \(x\) < b)



Discussion

No Comment Found

Related InterviewSolutions