1.

If logx a, ax/2 and logb x are in G.P., then write the value of x.

Answer»

We know when three terms say a,b,c are in GP 

We can write 

b2 = a.c 

∴ According to the given data 

We can write (ax/2)2 = logxa . logbx

ax = logxa . logb

⇒ \(a^x = \frac{logba}{logbx} \times log_bx\)

⇒ ax = logb

Multiplying by loga to both sides we get 

⇒ loga(ax) = loga (logba) 

⇒ x logaa = loga (logba) 

⇒ x = loga (logba)



Discussion

No Comment Found