InterviewSolution
Saved Bookmarks
| 1. |
If m is the slope of the tangent to the curve ` e^(y)=1+x^(2)` , thenA. `|m| gt 1 `B. `m lt 1 `C. `|m| lt 1 `D. `|m| le 1 ` |
|
Answer» Correct Answer - D We have, ` e^(y)=1+x^(2) ` ` rArr e^(y) (dy)/(dx)=2x " " [" Differentiating w.r.t. x" ] ` ` rArr (1+x^(2))(dy)/(dx)=2x " " [ because e^(y)=1+x^(2)] ` ` rArr (dy)/(dx) = (2x)/(1+x^(2)) ` ` rArr |m|= (2|x|)/(1+|x|^(2)) ` Now, A.M.` ge ` G.M. ` rArr (1+|x|^(2))/(2) ge sqrt(1xx |x|^(2)) ` ` rArr (1+|x|^(2))/(2) ge |x| ` ` rArr 1+|x|^(2) ge 2|x| ` ` rArr 1 ge (2|x|)/(1+|x|^(2)) rArr 1 ge |m| rArr |m| le 1 ` |
|