

InterviewSolution
Saved Bookmarks
1. |
If `(m_r ,1//m_r),r=1,2,3,4,`are four pairs of values of `xa n dy`that satisfy the equation `x^2+y^2+2gx+2fy+c=0`, then the value of `m_1, m_2, m_3, m_4`is`0`b. `1`c. `-1`d. none of these |
Answer» Correct Answer - 2 If `[m_(r), (1//m_(r))]` satisfy the given equation `x^(2) + y^(2) + 2gx + 2fy + c = 0`, then `m_(r)^(2) + 1/m_(r)^(2) + 2gm_(r) + (2f)/(m_(r)) + c = 0` `rArr m_(r)^(4) + 2gm_(r)^(3) + cm_(r)^(2) + 2fm_(r) + 1 = 0` Now, roots of given equation are `m_(1), m_(2), m_(3), m_(4)`. The product of roots `m_(1)m_(2)m_(3)m_(4) = ("Constant term")/("Coefficient of " m_(r)^(4)) = 1/1 = 1` |
|