1.

If m times the mth term of an A.P. is equal to n times nth term, then show that the (m + n)th term of the A.P. is zero

Answer»

According to the given condition,

mtm = nt

∴ m[a + (m – 1)d] = n[a + (n – 1)d] 

∴ ma + md(m – 1) = na + nd(n- 1) 

∴ ma + m2d – md = na + n2d – nd 

∴ ma + m2d – md – na – n2d + nd = 0 

∴ (ma – na) + (m2d – n2d) – (md – nd) = 0 

∴ a(m – n) + d(m2 – n2) – d(m – n) = 0 

∴ a(m – n) + d(m + n) (m – n) – d(m – n) = 0 

∴ (m – n)[a + (m + n – 1) d] = 0 

∴ [a+ (m + n – 1)d] = 0 …[Dividing both sides by (m – n)] 

∴ t(m + n) = 0 

∴ The (m + n)th term of the A.P. is zero.



Discussion

No Comment Found