InterviewSolution
Saved Bookmarks
| 1. |
If n = 1000 !, then the value of \(\frac{1}{log_2\,n}\) + \(\frac{1}{log_3\,n}\) + .... + \(\frac{1}{log_{1000}\,n}\) is(a) 0 (b) 1 (c) 10 (d) 103 |
|
Answer» Given, 1000! = n. Now, \(\frac{1}{log_2\,n}\) + \(\frac{1}{log_3\,n}\) + .... + \(\frac{1}{log_{1000}\,n}\) = logn 2 + logn 3 + .... + logn 1000 \(\bigg[\text{Using}\frac{1}{log_b\,a}= log_a\,b\bigg]\) = logn (2 × 3 × 4 × ... × 1000) = logn (1000!) = logn n = 1. |
|