1.

If P(n) is the statement “n2 – n + 41 is prime”, prove that P(1), P(2) and P(3) are true. Prove also that P(41) is not true.Given. P(n) = n2 - n + 41 is primeProve P(1),P(2) and P(3) are true and P(41) is not true.

Answer»

P(n) = n2 - n + 41 

= P(1) = 1 - 1 + 41 

= P(1) = 41 

Therefore, P(1) is Prime 

= P(2) = 22 – 2 + 41 

= P(2) = 4 - 2 + 41 

= P(2) = 43 

Therefore, P(2) is prime 

= P(3) = 32 – 3 + 41 

= P(3) = 9 – 3 + 41 

= P(3) = 47 

Therefore P(3) is prime 

Now, P(41) = (41)2 - 41 + 41 

= P(41) = 1681 

Therefore, P(41) is not prime 

Hence, P(1),P(2),P(3) are true but P(41) is not true.



Discussion

No Comment Found