

InterviewSolution
Saved Bookmarks
1. |
If `P_n`is the sum of a `GdotPdot`upto `n`terms `(ngeq3),`then prove that `(1-r)(d P_n)/(d r)=(1-n)P_n+n P_(n-1),`where `r`is the common ratio of `GdotPdot` |
Answer» Let the first term of G.P. be `alpha`. Then `P_(n)=alpha[(1-r^(n))/(1-r)]` `(dp_(n))/(dr)=alpha[((1-r)(-nr^(n-1))+(1-r^(n)))/((1-r^())^(2))]` `therefore" "(1-r)(dP_(n))/(dr)=alpha((-nr^(n-1)+nr^(n))/(1-r))+((1-r^(n))/(1-r))alpha` `=alphan.((1.r^(n-1)-1+r^(n))/(1-r))+P_(n)` `=ncdotP_(n-1)-nP_(n)+P_(n)` `=(1-n)P_(n)+nP_(n-1)` |
|