1.

If p, q, r are in A.P. and x, y, z in G.P., then Xq - r × Yr - p × Zp - q is equal to ………………….. A) p + q + r B) x × y × z C) 1 D) px + qy + rz

Answer»

Correct option is (C) 1

Given that p, q, r are in A.P.

\(\therefore\) p+r = 2q     _____________(1)

Also given that x, y, z are in G.P.

\(\therefore xz=y^2\)      _____________(2)

Now, \(x^{q-r}\times y^{r-p}\times z^{p-q}\) \(=x^{q-(2q-p)}\times y^{((2q-p)-p)}\times z^{p-q}\)

(By putting r  = 2q - p (from (1))

\(=x^{p-q}\times y^{2(q-p)}\times z^{p-q}\)

\(=(xz)^{p-q}\times y^{2(q-p)}\)      \((\because a^m.b^m=(ab)^m)\)

\(=(y^2)^{p-q}\times y^{2(q-p)}\)      (From (2))

\(=y^{2(p-q)}\times y^{-2(p-q)}\)

\(=y^{2(p-q)-2(p-q)}\)

\(=y^0=1\)

Hence, \(x^{q-r}\times y^{r-p}\times z^{p-q}=1\)

Correct option is C) 1



Discussion

No Comment Found