1.

If `pgtqgt0` and `prlt-1ltqr`, then find the value of `tan^(-1)((p-q)/(1+qr))+tan^(-1)((q-r)/(1+qr))+tan^(-1)((r-p)/(1+qr))`

Answer» As `p gt 0, q gt 0 => pq gt 0`
`:. tan^-1((p-q)/(1+pq)) = tan^-1p-tan^-1q->(1)`
As ` qr gt -1`
`:. tan^-1((q-r)/(1+qr)) = tan^-1q-tan^-1r->(2)`
As ` pr lt -1`
`:. tan^-1((r-p)/(1+rp)) = pi +tan^-1r-tan^-1p->(3)`
Adding (1),(2) and (3),
`tan^-1((p-q)/(1+pq))+tan^-1((q-r)/(1+qr)) tan^-1((r-p)/(1+rp)) = tan^-1p-tan^-1q+ tan^-1q-tan^-1r + pi +tan^-1r-tan^-1p`
`tan^-1((p-q)/(1+pq))+tan^-1((q-r)/(1+qr)) tan^-1((r-p)/(1+rp)) = pi.`


Discussion

No Comment Found