

InterviewSolution
Saved Bookmarks
1. |
If r is positive real number such that `4sqrt(r)-(1)/(4sqrt(r))= 4,` then find the value of ` 6sqrt(r)+(1)/(6sqrt(r)).` |
Answer» We have `4sqrt(r)-(1)/(4sqrt(r))= 4` On squaring, we get `sqrt(r)-(1)/(sqrt(r))-2= 16` or `sqrt(r)-(1)/(sqrt(r))= 18` Now, let `6sqrt(r)+(1)/(6sqrt(r))= x` On cubing both sides, we get `sqrt(r)+(1)/(sqrt(r))+3(6sqrt(r) +(1)/(6sqrt(r))) = x^(3)` `rArr 18 + 3x = x^(3)` `rArr x^(3) - 3x - 18 = 0` `rArr (x - 3) (x^(2) + 3x + 6) = 0` `rArr x = 3 (as x^(2) + 3x + 6 = 0 has complex roots)` `therefore 6sqrt(r) +(1)/(6sqrt(r) = 3` |
|