1.

If secA – tanA = x, then the value of x is1). √[(1 + sinA) /(1 – sinA) ]2). √[(1 – sinA) /(1 + sinA) ]3). (1 – sinA) /(1 + sinA)4). (1 + sinA) /(1 – sinA)

Answer»

$(\begin{array}{l} \RIGHTARROW {\rm{\;}}x\; = \;secA - tanA\\ \Rightarrow {\rm{\;}}x\; = \;\frac{1}{{cosA}} - \frac{{sinA}}{{cosA}}\\ \Rightarrow {\rm{\;}}x\; = \;\frac{{1 - sinA}}{{cosA}}\; = \;\frac{{1 - sinA}}{{\SQRT {1 - {{\SIN }^2}A} }}\; = \;\frac{{\sqrt {{{\left( {1 - sinA} \RIGHT)}^2}} }}{{\sqrt {1 - {{\sin }^2}A} }}\\ \Rightarrow {\rm{\;}}x\; = \;\sqrt {\frac{{{{\left( {1 - sinA} \right)}^2}}}{{{1^2} - {{\sin }^2}A}}} \; = \;\sqrt {\frac{{\left( {1 - sinA} \right) \times \left( {1 - sinA} \right)}}{{\left( {1 - sinA} \right) \times \left( {1 + sinA} \right)}}} \\ \therefore {\rm{\;}}x\; = \;\sqrt {\frac{{1 - sinA}}{{\;1 + sinA}}} \end{array})$



Discussion

No Comment Found