InterviewSolution
Saved Bookmarks
| 1. |
If `secxcos5x+1=0 `, where `0ltxle(pi)/(2)`, then find the value of x. |
|
Answer» Given that, `" "secxcos5x+1=0` `" "(cos5x)/(cosx)+1=0rArrcos5x+cosx=0` `rArr2cos((5x+x)/(2))*cos((5x-x)/(2))=0` `" "[because cosx+cosy=2cos""(x+y)/(2)*cos""(x-y)/(2)]` `rArr" "2cos3x*cos2x=0` `rArr" "cos3x=0orcos2x=0` `rArr " "cos3x=cos""(pi)/(2) or cos2x=cos""(pi) /( 2)` `therefore" "3x=(pi)/(2)rArr2x=(pi)/(2)` and `" "x=(pi)/(6)rArrx=(pi)/(4)` Hence, the solutions are `(pi)/(2), (pi)/(4) and (pi)/(6)`. |
|