1.

If `Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r )` is equal toA. nB. 2nC. `(n(n+1))/(2)`D. none of these

Answer» We have
`(pi)/(2)lt sin^(-1)x_(e)le(pi)/(2)for i=1,2…,2n`
`therefore underset(r=1)overset(2n)Sigma sin^(-1)x_(r )=npi`
`rarr sin^(-1) pi_(r ),r=1,2..,2n`
`rarr underset(r=1)overset(2n)Sigma x_(r )=underset(r=1)overset(2n)Sigma 1=2n`


Discussion

No Comment Found