1.

If `sin^(-1)(x/a)+sin^(-1)(y/b)=alpha` thenA. `(x^(2))/(a^(2))-(2xy)/(ab) cos alpha+(y^(2))/(b^(2))=sin^(2)alpha`B. `(x^(2))/(a^(2))-(2xy)/(ab) sin alpha+(y^(2))/(b^(2))=cos^(2)alpha`C. `(x^(2))/(a^(2))+(2xy)/(ab) cos alpha+(y^(2))/(b^(2))=sin^(2)alpha`D. `(x^(2))/(a^(2))+(2xy)/(ab) sin alpha+(y^(2))/(b^(2))=cos^(2)alpha`

Answer» We have
`sin^(-1)(x)/(a)+sin^(-1)(y)/(b)=alpha`
`rarr (pi)/(2)-cos^(-1)(x)(alpha)+(pi)/(2)-cos^(-1)(y)/(b)=alpha`
`rarr (xy)/(ab)-sqrt(1-(x^(2))/(z^(2))sqrt(1-y^(2))/(b^(2))=cos(pi-alpha)`
`rarr (x^(2))/(a^(2))+(2xy)/(ab)cos alpha+(y^(2))/(b^(2))=sin^(2)alpha`


Discussion

No Comment Found