1.

If `sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2)`is equal to1 (b)2 (c) `1/2`(d) none of these

Answer» `sin^(-1)x=pi/2-sin^(-1)y`
`sin^(-1)x=cos^(-1)y`
`sin^(-1)x=sin^(-1)sqrt(1-y^2)`
`x=sqrt(1-y^2`
`x^2=1-y^2`
`x^2+y^2=1-(1)`
`(1+x^4+y^4)/((x^2-x^2y^2)+y^2)=(1+(x^2+y^2)^2-2x^2y^2)/(1-x^2y^2)`
`(1+(x^2+y^2)^2-2x^2y^2)/(1-x^2y^2)`
`(22-2x^2y^2)/(1-x^2y^2)`
`2(1-x^2y^2)/(1-x^2y^2)`
`2`
Option B is correct.


Discussion

No Comment Found