1.

If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = \(\frac{a^2+b^2-2}{2}\)

Answer»

Consider a2 + b2 = sin2 α + sin2 β + 2 sin α sin β + cos2 α + cos2 β + 2 cos α cos β 

a2 + b2 = (sin2 α + cos2 α) + (sin2 β + cos2 β) + 2[cos α cos β + sin α sin β] 

a2 + b2 = 1 + 1 + 2 cos(α – β) 

∴ cos(α – β) = \(\frac{a^2+b^2-2}{2}\)



Discussion

No Comment Found