1.

If sin θ + cos θ = √3 , then prove that tan θ + cot θ = 1

Answer»

Solution :

sin θ + cos θ = 3 (Given)

or (sin θ + cos θ)2 = 3

or sin2 θ + cos2θ + 2sinθ cosθ = 3

2sinθ cosθ = 2 [sin2θ + cos2θ = 1]

or sin θ cos θ = 1 = sin2θ + cos2θ

or 1 = (sin2θ + cos2θ)/sin θ cos θ

Therefore, tanθ + cotθ = 1



Discussion

No Comment Found