1.

If `(sin(theta+alpha))/(cos(theta-alpha))=(1-m)/(1+m)`, prove that `tan(pi/4-theta)tan(pi/4-alpha)=m`

Answer» Let, `pi/4 - theta = A and pi/4-alpha = B`
Then`pi/4-theta+pi/4-alpha = A+B`
`=>theta+alpha = pi/2-(A+B)`
`=>sin(theta+alpha) = sin(pi/2-(A+B))`
`=>sin(theta+alpha) = cos(A+B)`
Similarly, `cos(theta-alpha) = cos(B-A)`
Now, putting these values in the given equation,
`(cos(A+B))/(cos(B-A)) = (1-m)/(1+m)`
`=>(cos(B-A))/(cos(A+B)) = (1+m)/(1-m)`
Using componendo and dividendo,
`=>(cos(B-A)+cos(A+B))/(cos(B-A)-cos(A+B)) = (1+m+1-m)/(1+m-1+m)`
`=>(2cosAcosB)/(2sinAsinB) = 2/(2m)`
`=>1/(tanAtanB) = 1/m`
`=>tanAtanb = m`
`:. tan(pi/4-theta)tan(pi/4-alpha) = m.`


Discussion

No Comment Found