1.

If `cos(alpha+beta)*sin(gamma+delta)=cos(alpha-beta)*sin(gamma-delta),`prove that `cotalphacotbetacotgamma=cotdelta`

Answer» `cos(alpha+beta)sin(gamma+delta) = cos(alpha-beta)sin(gamma-delta)`
`cos(alpha+beta)/cos(alpha-beta) = sin(gamma-delta)/sin(gamma+delta)`
Using componendo and dividendo,
`=>(cos(alpha+beta)+cos(alpha-beta))/ (cos(alpha+beta)-cos(alpha-beta))= (sin(gamma-delta)+sin(gamma+delta))/(sin(gamma-delta)-sin(gamma+delta))`
`=>(2cosalphacosbeta)/(-2sinalphasinbeta) = (2singammacos(-delta))/(2sin(-delta)cosgamma)`
`=>(cosalphacosbeta)/(-sinalphasinbeta) = (singammacosdelta)/(-sindeltacosgamma)`
`=>cotalphacotbeta = cotdelta/cotgamma`
`=>cotalphacotbeta cotgamma = cot delta`


Discussion

No Comment Found