1.

If`sinx=(2t)/(1+t^2),tany=(2t)/(1-t^2),"f i n d"(dy)/(dx)dot`

Answer» Let `t = tan theta`
Then, `sinx = (2tan theta)/(1+tan^2theta)`
As, `(2tan theta)/(1+tan^2theta) = sin2theta`,
`=> sin x = sin2theta`
`=> x= 2npi+2theta`
`=>dx/ (d theta) = 2 `
Now, `tan y = (2tan theta)/(1-tan^2theta)`
As, `(2tan theta)/(1- tan^2theta) = tan2theta`,
`:. tany = tan2 theta`
`=> y = npi+2theta`
`=>dy/(d theta) = 2`
`:. dy/dx = (dy/(d theta) )/(dx/(d theta) ) = 2/2 = 1`
`:. dy/dx = 1`


Discussion

No Comment Found