

InterviewSolution
Saved Bookmarks
1. |
If `(sinx)/(siny)=1/2,(cosx)/(cosy)=3/2`, where `x , y , in (0,pi/2),`then the value of `"tan"(x+y)`is equal to(a)`sqrt(13)`(b) `sqrt(14)`(c) `sqrt(17)`(d) `sqrt(15)` |
Answer» `sinx/siny = 1/2 and cosx/cosy = 3/2` `:. sinx/siny * cosy/cosx = (1/2)/(3/2)` `=>tanx/tany = 1/3` `=>tany = 3tanx` `:. tan(x+y) = (tanx+tany)/(1-tanxtany) = (tanx+3tanx)/(1-tanx(3tanx))` `=>tan(x+y) = (4tanx)/(1-3tan^2x)->(1)` Now, `siny = 2sinx and cosy = 2/3cosx` As, `sin^2y+cos^2y = 1` `:. (2sinx)^2+(2/3cosx)^2 = 1` `=>4sin^2x+4/9cos^2x = 1` `=>4cos^2x(tan^2x + 1/9) = 1` `=>4(tan^2x + 1/9)= sec^2x` `=>4(tan^2x + 1/9)= 1+tan^2x` `=>4tan^2x-tan^2x = 1-4/9` `=>3tan^2x = 5/9` `=>tan^2x = 5/27` `=>tanx = sqrt5/(3sqrt3)` Putting value of `tanx` in (1), `tan(x+y) = (4* sqrt5/(3sqrt3))/(1-3(5/27)) = (4sqrt5sqrt3)/4 = sqrt15` So option `(d)` is the correct option. |
|