InterviewSolution
Saved Bookmarks
| 1. |
If \(tan\;\theta \; = \;\frac{m}{n}\),then what is \(\frac{{msec\theta- ncosec\theta }}{{msec\theta+ ncosec\theta }}\) equal to?1). \(\frac{{m - n}}{{m + n}}\)2). \(\frac{{{n^2} - {m^2}}}{{{n^2} + {m^2}}}\)3). \(\frac{{{m^2} - {n^2}}}{{{m^2} + {n^2}}}\)4). 1 |
|
Answer» Given, ⇒ Hypotenuse = √(m2 + n2) $(\begin{array}{l}\frac{{msec\theta- ncosec\theta }}{{msec\theta+ ncosec\theta }}\; = \;\frac{{m\; \times \;\frac{{\sqrt {{m^2} + {n^2}} }}{n} - n\; \times \;\frac{{\sqrt {{m^2} + {n^2}} }}{m}}}{{m\frac{{\sqrt {{m^2} + {n^2}} }}{n} + n\frac{{\sqrt {{m^2} + {n^2}} }}{m}}}\; = \;\frac{{\frac{m}{n} - \frac{n}{m}}}{{\frac{m}{n} + \frac{n}{m}}}\; = \;\frac{{{m^2} - {n^2}}}{{{m^2} + {n^2}}}\\\therefore \;\frac{{msec\theta- ncosec\theta }}{{msec\theta+ ncosec\theta }}\; = \;\frac{{{m^2} - {n^2}}}{{{m^2} + {n^2}}}\end{array})$ |
|