InterviewSolution
Saved Bookmarks
| 1. |
If \(tan\theta = \frac{p}{q}\), then the value of \(\frac{{{\rm{psec\theta }} - {\rm{qcosec\theta }}}}{{{\rm{psec\theta }} + {\rm{qcosec\theta }}}}\) -1). \(\frac{{{\rm{p}} - {\rm{q}}}}{{{\rm{p}} + {\rm{q}}}}\)2). \(\frac{{{{\rm{q}}^2} - {{\rm{p}}^2}}}{{ - {{\rm{q}}^2} + {{\rm{p}}^2}}}\)3). \(\frac{{{{\rm{p}}^2} - {{\rm{q}}^2}}}{{{{\rm{q}}^2} + {{\rm{p}}^2}}}\)4). 1 |
|
Answer» <P>$(\FRAC{{{\rm{psec\theta }} - {\rm{qcosec\theta }}}}{{{\rm{psec\theta }} + {\rm{cosec\theta }}}} = \frac{{\frac{p}{{cos\theta }} - \frac{Q}{{sin\theta }}}}{{\frac{p}{{cos\theta }} + \frac{q}{{sin\theta }}}})$ $(= \frac{{ptan\theta- q}}{{ptan\theta + q}})$(by MULTIPLYING sinθ) $(= \frac{{p \times \frac{p}{q} - q}}{{p \times \frac{p}{q} + q}} = \frac{{{p^2} - {q^2}}}{{{p^2} + {q^2}}})$ |
|