

InterviewSolution
Saved Bookmarks
1. |
If `tanbeta=(tanalpha+tangamma)/(1+tanalphatangamma)dot`prove that `sin2beta=(sin2alpha+sin2gamma)/(1+sin2alphasin2gamma)`. |
Answer» `tanbeta = (tanalpha+tan gamma)/(1+tanalphatangamma)` `=>tan beta = (sinalpha/cosalpha+singamma/cosgamma)/(1+sinalpha/cosalpha*singamma/cosgamma)` `=(sinalphacosgamma + singammacosalpha)/(cosalphacosgamma+sinalphasingamma)` `=>tan beta=(sin(alpha+gamma))/(cos(alpha-gamma))` Now, `sin2beta = (2tanbeta)/(1+tan^2beta)` `=(2(sin(alpha+gamma))/cos(alpha-gamma))/(1+sin^2(alpha+gamma)/cos^2(alpha-gamma) ` `=(2sin(alpha+gamma)cos(alpha-gamma))/(cos^2(alpha-gamma) + sin^2(alpha+gamma))` `=(sin(alpha+gamma+alpha-gamma) + sin(alpha+gamma-alpha+gamma))/(((1+cos2(alpha-gamma))/2)+((1-cos2(alpha+gamma))/2))` `=(sin2alpha+sin2gamma)/(1+1/2(cos(alpha-gamma) - cos(alpha+gamma)))` `=(sin2alpha+sin2gamma)/(1+1/2(2sin2alphasin2gamma)` `=(sin2alpha+sin2gamma)/(1+sin2alphasin2gamma) = R.H.S.` |
|