1.

If the common difference of an A.P is 1 and 6th term is \(\cfrac{(4cos^2α+1)}{cos^2α}\) , then first term isA) cot2 α B) cosec2 α C) tan2 α D) sec2 α

Answer»

Correct option is (C) tan2 α

We have common difference = d = 1

\(6^{th}\) term \(=a_6=\frac{4\,cos^2\alpha+1}{cos^2\alpha}\)

Let a be the first term of A.P.

Then a+5d \(=\frac{4\,cos^2\alpha+1}{cos^2\alpha}\)    \((\because a_6=a+5d)\)

\(\Rightarrow\) \(a=\frac{4\,cos^2\alpha+1}{cos^2\alpha}-5d\)

\(=\frac{4\,cos^2\alpha+1}{cos^2\alpha}-5\)                \((\because d=1)\)

\(=\frac{4\,cos^2\alpha+1-5\,cos^2\alpha}{cos^2\alpha}\)

\(=\frac{1-cos^2\alpha}{cos^2\alpha}=\frac{sin^2\alpha}{cos^2\alpha}=tan^2\alpha\)     \((\because1-cos^2\alpha=sin^2\alpha)\)

Hence, first term of A.P. is \(tan^2 \alpha.\)

Correct option is C) tan2 α 



Discussion

No Comment Found